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STRUCTURAL DAMAGE DETECTION USING

VIRTUAL PASSIVE CONTROLLERS

Jiann-Shiun Lew∗
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Jer-Nan Juang †

NASA Langley Research Center, Hampton, VA 23681

Abstract

This paper presents novel approaches for structural damage detection which uses the virtual

passive controllers attached to structures, where passive controllers are energy dissipative

devices and thus guarantee the closed-loop stability. The use of the identified parameters

of various closed-loop systems can solve the problem that the reliable identified parameters,

such as natural frequencies, of the open-loop system may not provide enough information for

damage detection. Only a small number of sensors are required for the proposed approaches.

The identified natural frequencies, which are generally much less sensitive to noise and

more reliable than the identified mode shapes, are used for damage detection. Two damage

detection techniques are presented. One technique is based on the structures with direct
∗Research Professor, Center of Excellence in Information Systems. Senior Member AIAA
†Principal Scientist, Structural Dynamics Branch. Fellow AIAA
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output feedback controllers while the other technique uses the second-order dynamic feedback

controllers. A least-squares technique, which is based on the sensitivity of natural frequencies

to damage variables, is used for accurately identifying the damage variables.

1 Introduction

Reliable and efficient techniques for health monitoring and damage detection of large struc-

tures, such as spacecraft and aircraft, are essential for safe operation, maintenance cost

reduction, and failure prevention. In the last decade, various vibration-based methods have

been proposed [1-6]. These methods are more globally sensitive to damage than local-

ized conventional methods such as ultrasonic and eddy current methods [7]. However, the

vibration-based algorithms developed so far cannot be considered very efficient and effec-

tive. For example, the widely used finite element (FE) model-update techniques [1,2] require

many sensors to measure mode shapes, but the number of sensors is limited in practical

applications.

In general, the identified mode shapes are much more sensitive to noise and environ-

mental uncertainty than the identified natural frequencies. On the other hand, the natural

frequencies are sensitive to structural damage, such as stiffness loss and cracking. Thus, the

identified natural frequencies are more reliable for damage detection than the identified mode

shapes. In real applications, the identified natural frequencies of the open-loop system may

not provide enough information for damage detection, because the number of the reliable

natural frequencies may be smaller than the number of the possible damage elements. To

solve this problem, some researchers have proposed the use of the “Twin” structures, where

a structure is attached to the tested structure, for damage detection [8,9]. The concept of
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physical attachment of structures may limit the application of this technique.

In this paper, we use the natural frequencies of the closed-loop systems with virtual pas-

sive controllers [10,11]. Recently, various techniques have been developed for the applications

of passive controllers [10-15]. When a virtual passive controller is applied to a flexible struc-

ture, the system is almost always augmented with damping regardless of the system size.

In theory, no matter what happens, the controller, which resembles mass-spring-dashpot,

won’t destabilize the system because it is an energy dissipative device. In performing the

damage detection, the virtual passive controller only uses the existing control devices and

no additional physical elements are attached to the system. The proposed techniques have

the advantages of flexibility of controller design and placement.

In this paper, two damage detection techniques based on different control techniques

are proposed. First, consider only the direct output feedback, implying the absence of

the dynamics in the feedback controller. In this circumstance, the number of the natural

frequencies of the closed-loop system is the same as that of the open-loop system. Second,

assume that the feedback controller contains a set of second-order dynamic equations. It is

equivalent to visualize a virtual passive damping system, i.e. the feedback controller, which

is linked side by side to the real flexible body. In other words, two sets of second-order

dynamic equations are coupled to generate a closed-loop system. The number of natural

frequencies of the closed-loop system is the summation of the order of the open-loop system

and the order of the controller.

In on-line health monitoring, first, system identification techniques are used to process

experimental data to obtain the identified natural frequencies of open-loop and closed-loop

systems. Then, a least-squares technique, which is based on the sensitivity of natural fre-
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quencies to the variables of damage, is used for detecting the damage variables. Examples

are given to demonstrate and verify the presented approaches.

2 Direct Output Feedback

In this section, we present a damage detection algorithm that is based on a system with

a direct output feedback controller. In the analysis and design, the second order dynamic

equation of structural vibration is used

Mẍ+Dẋ+Kx = Bu (1)

y = Caẍ+ Cvẋ+ Cdx. (2)

Here x is an n x 1 displacement vector, and M, D, and K are mass, damping, and stiffness

matrices, respectively. In the measurement equation, y is the q x 1 measurement vector,

and Ca, Cv and Cd are acceleration, velocity, and displacement influence matrices. The

measurement equation may be used either directly or indirectly for a feedback controller

design. Here we use the direct feedback, and the input vector u is

u = −Fy = −FCaẍ − FCvẋ − FCdx. (3)

Substituting Eq. (3) into Eq. (1) yields

(M +BFCa)ẍ+ (D +BFCv)ẋ+ (K +BFCd)x = 0. (4)

In this paper, the changes of the identified natural frequencies of the tested system are used

for damage detection.

To illustrate the approach, consider the eigenvalue problem of a second-order dynamic

system without a damping term. The eigensystem of the open-loop system can be written
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as

(ω2
oiM(z) +K(z))φi = 0, (5)

where ωoi is the ith natural frequency corresponding to the ith eigenvector φi, and z is the

vector of damage variables such as the stiffness losses of elements. The r-dimensional damage

vector z is defined as

z = [z1 z2 . . . zr]T , (6)

where zi is the ith damage variable, for example the value of zi is 1 when the ith element

has 0% stiffness loss and the value of zi is 0.5 when the ith element has 50% stiffness loss.

The natural frequency vector of the open-loop system is defined as

ωo = [ωo1 ωo2 . . . ωon]T . (7)

There are n natural frequencies for this second-order dynamic system. The number r of the

damage variables may be larger than n. In this situation, the use of the natural frequencies

of the open-loop system may not provide enough information to identify the r-dimensional

damage vector z. To solve this problem, let us include the identified natural frequencies of

the m closed-loop systems with different direct feedback controllers. The eigensystem of the

jth closed-loop system is expressed as

((ωj
ci)

2M j
t (z) +Kj

t (z))φi = 0, (8)

where ωj
ci is the ith eigenvalue of the jth closed-loop system, M j

t and Kj
t are mass and

stiffness matrices of the jth closed-loop system, respectively. Each closed-loop system has

n natural frequencies. The natural frequency vectors of these m closed-loop systems are

computed as

ω1
c = [ω

1
c1 ω1

c2 . . . ω1
cn]

T

ω2
c = [ω

2
c1 ω2

c2 . . . ω2
cn]

T (9)
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...

ωm
c = [ω

m
c1 ωm

c2 . . . ωm
cn]

T .

Then the system natural frequency vector, which includes the open-loop system and the m

closed-loop systems, is defined as

ω = [ωT
o (ω

1
c )

T (ω2
c )

T . . . (ωm
c )

T ]T . (10)

From the Taylor’s series expansion, the natural frequency vector ω can be expressed as a

function of damage variables

ω(z +∆z) = ω(z) + A(z)∆z + . . . (11)

with

A =




∂ωo

∂z1

∂ωo

∂z2
. . . ∂ωo

∂zr

∂ω1
c

∂z1

∂ω1
c

∂z2
. . . ∂ω1

c

∂zr

...
... . . . ...

∂ωm
c

∂z1

∂ωm
c

∂z2
. . . ∂ωm

c

∂zr




, (12)

where A is the n(m + 1) x r sensitivity matrix of natural frequency to damage variables.

The sensitivity of the closed-loop system can be enhanced by choosing feedback controllers

[16]. The number m is chosen to satisfy the inequation

n(m+ 1) ≥ r. (13)

The linear approximation of Eq. (11) is

ω(z +∆z) ≈ ω(z) + A(z)∆z. (14)

Eq. (14) can be written as

A(z)∆z ≈ ω(z +∆z)− ω(z) = ∆ω. (15)
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The least-squares techniques can be used to obtain the approximated solution of ∆z as

∆z ≈ (AT A)−1AT∆ω. (16)

To detect the damage variables zi, i = 1, . . . , r accurately, we apply the following procedures:

1. Compute the updated natural frequency vector ω(znew) (from Eqs. (5) and (8)) as a

function of the updated znew, where the initial znew corresponds to the healthy structure.

2. Compute the difference between the identified natural frequency vector ωt, which

corresponds to the tested system, and the updated vector ω(znew) as

∆ω = ωt − ω(znew). (17)

3. Compute the sensitivity matrix A(znew).

4. Use the linear approximation to compute the updated variables

∆z = (AT A)−1AT∆ω (18)

znew = zold +∆z. (19)

5. Check if |∆z| ≤ precision error specified.

(a) Yes, stop (b) No, go to 1.

The parameters used for damage detection are not limited to the identified natural fre-

quencies. For example, consider an n-degree-of-freedom spring-mass system with single input

and l displacement outputs. The transfer functions of the open-loop system are

gj(s) =
n∑

i=1

bji

s2 + ω2
oi

, j = 1, 2, . . . , l, (20)
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where gj is the transfer function corresponding to the jth displacement sensor. The param-

eter vector of this open-loop system is defined as

po = [ωo1 . . . ωon b11 . . . b1n . . . bl1 . . . bln]T . (21)

The dimension of the parameter vector po is (l + 1)n. We can also include the parameter

vectors pj
c, j = 1, . . . , m corresponding to the m closed-loop systems, and then define the

system parameter vector as

p = [pT
o (p

1
c)

T (p2
c)

T . . . (pm
c )

T ]T . (22)

The augmented parameter vector p can then be used for the identification of the damage

vector z.

In the least-squares procedures, the updated variables in Eq. (19) can be computed as

[17,18]

znew = zold + α∆z (23)

with

∆z = (AT A)−1AT∆ω

where α is the learning rate [17], which is chosen to make the difference between the updated

ω and the identified ωt smaller. In the design process, we choose controllers and the number

of the closed-loop systems to make AT A full rank without ill-condition. Other optimization

techniques, such as Newton’s method and Conjugate Gradient method [17,18], can also be

applied to compute the solution of z and solve the problem of the singularity of AT A.
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3 Controller with Second-Order Dynamics

In this section, we present a damage detection method in which the feedback controller is

described as a set of second-order dynamic equations

Mcẍc +Dcẋc +Kcxc = Bcuc (24)

yc = Cacẍc + Cvcẋc + Cdcxc. (25)

Here xc is the controller state vector of dimension nc, and Mc,Dc, and Kc are the controller

mass, damping and stiffness matrices, respectively. The quantities Mc, Dc, Kc, Cac, Cvc,

and Cdc are the design parameters for the controller. Let the input vectors u and uc be

u = yc = Cacẍc + Cvcẋc + Cdcxc (26)

uc = y = Caẍ+ Cvẋ+ Cdx. (27)

Substituting Eq. (26) into Eq. (1) and Eq. (27) into Eq. (24) yields

Mtẍt +Dtẋt +Ktxt = 0, (28)

where

Mt =


 M −BCac

−BcCa Mc


 , Dt =


 D −BCvc

−BcCv Dc


 (29)

Kt =


 K −BCdc

−BcCd Kc


 , xt =


 x

xc


 . (30)

In the controller design, Mc,Dc,Kc, Cac, Cdc, and Cvc are chosen such that the closed-loop

system is stable [10,11]. This closed-loop system has n+nc natural frequencies. For damage

detection, we use the identified natural frequencies of m closed-loop systems with different

controllers, where the dimension of the controller state vector xc is assumed to be a constant
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nc for simplicity of presentation. The vectors of natural frequencies of these m closed-loop

systems are computed as

ω1
c = [ω

1
c1 ω1

c2 . . . ω1
c,n+nc

]T

ω2
c = [ω

2
c1 ω2

c2 . . . ω2
c,n+nc

]T (31)

...

ωm
c = [ω

m
c1 ωm

c2 . . . ωm
c,n+nc

]T .

Then the natural frequency vector of the m closed-loop systems is defined as

ω = [(ω1
c )

T (ω2
c )

T . . . (ωm
c )

T ]T , (32)

where ω is a vector of (n + nc)m dimension. To find the solution of r-dimensional vector z,

m needs to satisfy the following inequality

(n+ nc)m ≥ r. (33)

To obtain solutions of the damage variables zi, i = 1, . . . , r, we use the identified natural

frequencies of these m closed-loop systems and apply the least-squares technique in the

preceding section. The identified natural frequencies of the open-loop system can also be

included for damage detection, and the parameters used for damage detection are not limited

to the identified natural frequencies.

4 Spring-Mass Example

A spring-mass system with two-degrees of freedom is used for the study. First, the results

with the direct output feedback are presented. Then, the results with the dynamic feedback

controller are discussed.
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4.1 Direct Output Feedback

Consider a spring-mass system with two-degrees of freedom illustrated in Figure 1. The

dynamic equation of this system is

 m1 0

0 m2





 ẍ1

ẍ2


+


 k1 + k2 −k2

−k2 k2





 x1

x2


 =


 0
1


 u. (34)

�

�

�

�

� �

�

� �� �

�

�

Figure 1: Two-degree-of-freedom system

Table 1: Parameters of the two-degree spring-mass system.

m1 m2 k1 k2

3 1 50 80

Table 1 lists the values of the four parameters of this system. Using the displacement

measurement at x2, the input u can be expressed as

u = −cx2. (35)

Substituting Eq. (35) into Eq. (34) yields

 m1 0

0 m2





 ẍ1

ẍ2


+


 k1 + k2 −k2

−k2 k2 + c





 x1

x2


 = 0. (36)

In this example, the results are based on the analysis of the open-loop system and three

closed-loop systems with different output feedback

u1 = −3x2, u2 = −10x2, u3 = −x2.
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In the first case, each parameter (mi or ki) has a small reduction of 5%. To find the

solution of these four parameters, we need to use at least two systems, since the open-loop

system or each closed-loop system has 2 natural frequencies. Table 2 shows the results when

the natural frequencies of the open-loop system and the closed-loop system with the first

controller are used. In this minor damage case, each parameter has a reduction of 0.2%.

Each parameter converges to the true one with a negligible error in one iteration. When

the natural frequencies of the open-loop system and three closed-loop systems are used, the

results are the same as that in Table 2.

Table 2: Case 1 Results from open-loop and one closed-loop systems.

iteration No. m1 m2 k1 k2

1 2.9940 0.9980 49.900 79.840

True 2.9940 0.9980 49.900 79.840

Table 3: Case 2 Results.

iteration No. m1 m2 k1 k2

1 4.2087 1.5595 30.733 53.115

2 4.8997 1.9251 30.001 50.324

3 4.9985 1.9980 30.000 50.001

4 5.0000 2.0000 30.000 50.000

True 5.0000 2.0000 30.000 50.000

In the second case, each parameter has a significant change, m1 changes from 3 to 5, m2

changes from 1 to 2, k1 reduces from 50 to 30, k2 reduces from 80 to 50. Table 3 shows

the results when the natural frequencies of the open-loop system and the first closed-loop

system are used. Each parameter converges to the true value after 4 iterations when all the

parameters have significant changes.
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4.2 Controller with Second-Order Dynamics
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Figure 2: Two-degree-of-freedom system with a two-degree-of-freedom dynamic controller

Consider the preceding two-degrees-of-freedom system with a two-degrees-of-freedom dy-

namic controller as shown in Figure 2. The second-order controller design in this case is

simply

u = kc1(xc1 − x2), (37)

where the controller dynamic equations of xc1 and xc2 are solved by

 mc1 0

0 mc2





 ẍc1

ẍc2


+


 kc1 + kc2 −kc2

−kc2 kc2





 xc1

xc2


 =


 0 kc1

0 0





 x1

x2


 . (38)

The dynamic equation of the closed-loop system is



m1 0 0 0

0 m2 0 0

0 0 mc1 0

0 0 0 mc2







ẍ1

ẍ2

ẍc1

ẍc2



+




k1 + k2 −k2 0 0

−k2 k2 + kc1 −kc1 0

0 −kc1 kc1 + kc2 −kc2

0 0 −kc2 kc2







x1

x2

xc1

xc2



= 0. (39)

This closed-loop system has 4 natural frequencies, so only one closed-loop system is required

for obtaining the solution of four parameters. The results are based on the analysis of two

closed-loop systems with different controllers having the parameters listed in Table 4.

Table 4: Parameters of two passive dynamic controllers.

mc1 mc2 kc1 kc2

Cont. 1 5 3 200 100

Cont. 2 1 3 50 80
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In the first case, the parameter changes are the same as those in Case 1 of the preceding

direct output feedback example. Table 5 shows the results when the natural frequencies

of the first closed-loop system are used. In this minor damage case, each parameter has a

reduction of 0.2%. Each parameter converges to the true one with a negligible error in one

iteration. When the natural frequencies of both closed-loop systems are used, the results are

the same as that in Table 5.

Table 5: Case 1 Results from one closed-loop system.

iteration No. m1 m2 k1 k2

1 2.9940 0.9980 49.900 79.840

True 2.9940 0.9980 49.900 79.840

Table 6: Case 2 Results.

Iteration No. m1 m2 k1 k2

1 4.6310 1.5974 17.659 72.878

2 4.5499 1.8666 25.804 42.743

3 5.0150 1.9941 29.737 49.870

4 4.9999 2.0000 29.999 50.000

True 5.0000 2.0000 30.000 50.000

In Case 2 of this example, each parameter has a significant change, which is the same as the

one in Case 2 of the direct output feedback example. Table 6 shows the results when the

natural frequencies of the first closed-loop system are used. All the parameters converge to

the true values after 4 iterations when all the parameters have significant changes.

Comparing the results in Tables 2 and 5, both techniques can accurately identify the

damage variables in one iteration when the parameter changes are insignificant. From Tables
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3 and 4, both techniques can successfully identify the damage variables in a few iterations

when parameters have significant changes.

5 Euler’s Beam Example

�

�

�

��� ��

Figure 3: Cantilevered Euler’s beam

The second structure used for study is a cantilevered aluminum Euler’s beam, as shown

in Figure 3. The length, width, and thickness of this beam are 1, 0.0254, and 0.000635

meters, respectively. The study is based on the analysis of the finite element model of this

beam structure [19]. For the structural damage, we consider the stiffness loss of 15 elements

of equal length from the fixed end to the free end. The damage variables zi, i = 1, . . . , 15,

which correspond to the 15 elements, are 1 for the healthy structure. If the stiffness reduction

of the ith element is a%, then the value of zi is 1-0.01a. For example, the value of zi is 0.5,

when the stiffness loss of the ith element is 50%.

5.1 Direct Output Feedback

In the direct output feedback example, we use two displacement measurements located at

positions 3 and 15, respectively. The first closed-loop system has the collocated output

feedback controller at position 3. The second closed-loop system has the collocated output
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feedback controller at position 15. The natural frequencies of the first 10 modes of the

open-loop system and the two closed-loop systems are used for damage detection.

Table 7: Case 1 Results.

iteration No. 1 True

z1 1.0000 1.0000

z2 1.0000 1.0000

z3 1.0000 1.0000

z4 1.0000 1.0000

z5 0.99800 0.99800

z6 1.0000 1.0000

z7 1.0000 1.0000

z8 0.99800 0.99800

z9 1.0000 1.0000

z10 1.0000 1.0000

z11 0.99800 0.99800

z12 1.0000 1.0000

z13 1.0000 1.0000

z14 1.0000 1.0000

z15 1.0000 1.0000

Tables 7 and 8 show the results of damage detection for two different cases. In Case 1,

elements 5, 8 and 11 each have 0.2% stiffness loss. The solution of each parameter in

the first iteration converges to the true one. The results in Table 10 show that all the

parameters converge to the true ones after 5 iterations when 6 elements have significant

stiffness reductions.
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Table 8: Case 2 Results.

iteration No. 1 2 3 4 5 True

z1 0.9670 1.0101 1.0018 1.0000 1.0000 1.0000

z2 0.6375 0.6864 0.6980 0.7000 0.7000 0.7000

z3 0.9802 1.0023 1.0046 0.9999 1.0000 1.0000

z4 0.5084 0.6012 0.5989 0.6000 0.6000 0.6000

z5 0.6846 0.7523 0.7981 0.8000 0.8000 0.8000

z6 1.1144 1.0388 0.9950 1.0000 1.0000 1.0000

z7 0.9174 0.9801 1.0017 1.0000 1.0000 1.0000

z8 0.6405 0.6925 0.6993 0.7000 0.7000 0.7000

z9 1.0857 1.0284 0.9975 1.0000 1.0000 1.0000

z10 0.8670 0.9488 0.9998 1.0000 1.0000 1.0000

z11 0.8522 0.8255 0.7970 0.8000 0.8000 0.8000

z12 1.0392 0.9948 1.0039 0.9999 1.0000 1.0000

z13 0.8776 0.9682 0.9952 1.0000 1.0000 1.0000

z14 0.5773 0.6071 0.5997 0.6000 0.6000 0.6000

z15 0.9764 1.0153 1.0053 0.9999 1.0000 1.0000
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Figure 4: Cantilevered Euler’s beam with passive dynamic controllers

5.2 Controller with Second-Order Dynamics

Two passive systems, which are spring-mass systems with two-degrees-of-freedom (Figure 4),

are attached to positions 3 and 15, respectively. The results of damage detection are based

on the analysis of two closed-loop systems with controllers of different designed variables as

listed in Table 9. The natural frequencies of the first 12 modes of two closed-loop systems

are used. In Case 1, elements 5, 8 and 11 each have 0.2% stiffness loss. Each parameter

converges to the true one in one iteration, and the results are the same as that shown in

Table 7. The results in Table 10 show that all the parameters converge to the true ones after

5 iterations when 6 elements have significant stiffness reductions.

Table 11 lists the first 10 natural frequencies of the open-loop system and the four closed-

loop systems, which include the preceding two closed-loop systems with direct output feed-

back and the preceding two closed-loop systems with passive dynamic controllers. The

natural frequencies of the first 3 modes have relatively significant changes when the displace-
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Table 9: Design variables of controllers.

Controller 1 Controller 2

mc1 0.08 0.32

mc2 0.16 0.24

mc3 0.24 0.16

mc4 0.32 0.08

kc1 70 140

kc2 140 70

kc3 140 70

kc4 70 140

Table 10: Case 2 Results.

iteration No. 1 2 3 4 5 True

z1 0.8916 0.9600 1.0015 0.9999 1.0000 1.0000

z2 0.9711 0.6987 0.6933 0.7000 0.7000 0.7000

z3 1.0211 1.0596 1.0036 1.0001 1.0000 1.0000

z4 0.6541 0.6397 0.5975 0.6000 0.6000 0.6000

z5 0.9504 0.8848 0.7915 0.8000 0.8000 0.8000

z6 0.9890 0.9576 0.9887 0.9999 1.0000 1.0000

z7 0.7979 0.9494 1.0072 1.0000 1.0000 1.0000

z8 0.4471 0.6455 0.6984 0.7000 0.7000 0.7000

z9 0.7410 0.8829 1.0012 0.9999 1.0000 1.0000

z10 0.8122 0.9416 0.9989 1.0000 1.0000 1.0000

z11 0.7451 0.7628 0.8034 0.8000 0.8000 0.8000

z12 1.0017 0.9552 0.9916 0.9999 1.0000 1.0000

z13 1.0535 1.0141 1.0042 0.9998 1.0000 1.0000

z14 0.7395 0.6145 0.5922 0.5999 0.6000 0.6000

z15 0.9904 1.0583 1.0335 0.9984 1.0000 1.0000
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Table 11: Natural frequencies of various systems.

ωi Open Direct 1 Direct 2 Dynamic 1 Dynamic 2

i=1 0.2314 0.4074 0.9297 0.0385 0.0576

2 1.4571 1.3465 1.8906 0.6854 0.5064

3 4.1401 4.3181 4.4665 1.5921 1.5126

4 8.3103 8.2954 8.3300 3.5606 3.5784

5 14.1798 14.2440 14.2698 4.6111 4.7958

6 21.9843 21.9771 22.0034 7.9502 8.1083

7 31.9425 31.9397 31.9570 10.0531 9.9792

8 44.1603 44.1765 44.1789 15.8172 16.7393

9 58.5049 58.5086 58.5024 20.7861 22.0166

10 74.4921 74.5023 74.4978 28.6436 26.3393

ment output feedback is used, meanwhile the natural frequencies of the high frequency modes

change little. This may limit the application of the direct output feedback approach since

noise and environmental uncertainty may have significant effect on the identified natural

frequencies of the high frequency modes. All the natural frequencies of the two closed-loop

systems with passive dynamic controllers change significantly.

The advantage of direct output feedback technique is its simplicity because the feedback

controller is directly from the output measurements. The use of the controller with a passive

dynamic system has the following advantages: (1)flexibility of adjusting natural frequencies,

(2)variety of choice of passive controllers, (3)increase of the number of the effective natural

frequencies, which are reliable in the considered low frequency range. In real applications,

we can combine these two techniques and use the advantages of both techniques for damage

detection.
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6 Conclusions

This paper presents novel approaches for structural damage detection by adding virtual

passive controllers to structures. The controller is passive in the sense that it contains mech-

anisms that serve only to transfer and dissipate energy to the system. Stabilization can be

accomplished by a controller with gains interpreted as virtual mass, spring, and dashpot

elements. Both damage detection techniques, which are based on the direct output feedback

and the feedback controller with second-order dynamic equations, can efficiently identify

damage in the presented examples when the damage variables have minor as well as sig-

nificant changes. In this paper only the identified natural frequencies are used for damage

detection, since the identified natural frequencies are generally more reliable than the identi-

fied mode shapes. Only a small number of sensors are required for the presented approaches.

The advantage of direct output feedback technique is its simplicity. The technique with the

controller of passive dynamic system has the advantages of flexibility and variety. In real

applications, one may combine the advantages of both techniques for damage detection.
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